
 PARADIGMA, No.4, 2025, səh.142-146 

https://doi.org/10.30546/30015.2025.01.4.1076  

 

142 
 

MİCROSERVİS MÜHİTİNDƏ MƏLUMATLARIN ÖTÜRÜLMƏSİNİN EFFEKTİV 

YOLLARI 

 

T.A. Əsədli, A.X. Xanməmmədov  

 Azərbaycan Universiteti, Ceyhun Hacıbəyli 71, Bakı, Azərbaycan 

 e-mail: tural.asadli@student.au.edu.az 

 
Xülasə: Mikroservis arxitekturasında məlumat ötürülməsi sistemin 

performansına, etibarlılığına və miqyaslanmasına birbaşa təsir göstərir. 

Servislər arasında effektiv kommunikasiya təmin etmək üçün sinxron və 

asinxron üsullar, mesaj növbələri, API Gateway həlləri tətbiq edilir. Bu 

yanaşma sistemin çevikliyini artırır və komponentlər arasında asılılığı azaldır. 

 
Açar sözlər: Mikroservislər, mesaj növbələri, RESTful API, gRPC, event-

driven arxitektura, data consistency. 

 

Giriş 

Microservis arxitekturası monolit sistemlərdən fərqli olaraq tətbiqin bir-birindən müstəqil 

işləyən kiçik xidmətlərə bölünməsi prinsipinə əsaslanır. Hər bir microservis öz verilənlər 

bazasına və biznes məntiqinə malik olur. Bu struktur çeviklik, miqyaslana bilmə və davamlılıq 

baxımından mühüm üstünlüklər yaradır. Lakin bu mühitdə əsas çağırışlardan biri xidmətlər 

arasında məlumatların düzgün, təhlükəsiz və səmərəli ötürülməsidir [1]. Xidmətlərarası düzgün 

kommunikasiya olmazsa, sistemdə gecikmələr, məlumat uyğunsuzluğu və təhlükəsizlik riskləri 

yarana bilər. Mikroservis arxitekturası müasir proqram təminatı sistemlərinin qurulmasında 

geniş tətbiq olunan yanaşmadır. Bu arxitekturada böyük tətbiqlər kiçik, müstəqil servislərə 

bölünür və hər bir servis öz məsuliyyət sahəsində fəaliyyət göstərir. Monolit sistemlərdən fərqli 

olaraq, mikroservislər ayrı-ayrı deploy edilə, miqyaslana və idarə edilə bilir. Lakin bu 

üstünlüklər servislər arasında məlumat mübadiləsinin düzgün təşkili məsələsini ortaya çıxarır. 

Mikroservis mühitində məlumatların effektiv ötürülməsi sistemin ümumi performansını, 

etibarlılığını və dayanıqlığını müəyyən edir. Servislər arasında düzgün kommunikasiya 

strategiyası seçilmədiyi təqdirdə gecikmələr, məlumat itkisi və sistem çökməsi kimi problemlər 

yarana bilər. Buna görə də mikroservis arxitekturasında işləyən təşkilatlar məlumat ötürülməsi 

üçün ən uyğun texnologiya və metodları seçməli, sistemin ehtiyaclarına uyğun həllər tətbiq 

etməlidirlər. 

Məlumat ötürülməsi üsullarının əsas növləri 

Mikroservis arxitekturasında məlumat mübadiləsi üçün müxtəlif yanaşmalar mövcuddur. 

Hər bir üsulun özünəməxsus üstünlükləri və tətbiq sahələri vardır. Təşkilatlar sistemin 

tələblərinə, performans göstəricilərinə və biznes məqsədlərinə uyğun olaraq bu üsullardan birini 

https://doi.org/10.30546/30015.2025.01.4.1076
mailto:tural.asadli@student.au.edu.az


PARADIGMA, No.4, 2025 

Azərbaycan Universiteti 

143 

və ya bir neçəsini eyni vaxtda istifadə edə bilərlər. Düzgün kommunikasiya modelinin seçilməsi 

sistemin gələcək inkişafına və miqyaslanmasına əhəmiyyətli təsir göstərir. 

1. Sinxron Kommunikasiya (Synchronous Communication) 

Sinxron kommunikasiya modelində bir servis digər servisə sorğu göndərir və cavab 

gözləyir. Bu zaman sorğu göndərən servis cavab alınana qədər öz işini davam etdirə bilmir. 

Sinxron yanaşma real vaxt tələb edən əməliyyatlar üçün uyğundur. 

RESTful API 

REST (Representational State Transfer) mikroservislər arasında ən geniş istifadə olunan 

protokoldur. HTTP əsaslı olan bu yanaşma standart metodlar (GET, POST, PUT, DELETE) 

vasitəsilə resurslarla əməliyyatlar aparır. RESTful API anlaşıqlı, sadə və müxtəlif 

platformalarda dəstəklənir. JSON formatında məlumat mübadiləsi həyata keçirilir və sərhədləri 

aydın müəyyən olunmuş endpoint-lər vasitəsilə servislər bir-biri ilə əlaqə qurur. Bu üsul kiçik 

və orta həcmli sorğular üçün effektivdir, lakin yüksək yüklü sistemlərdə performans 

problemləri yarana bilər. 

gRPC 

gRPC Google tərəfindən hazırlanmış yüksək performanslı RPC (Remote Procedure Call) 

çərçivəsidir. HTTP/2 protokolu üzərində işləyir və Protocol Buffers (protobuf) formatında 

məlumat serializasiyası həyata keçirir. REST API-dan fərqli olaraq, gRPC daha az həcmli 

məlumat paketləri göndərir və binary format istifadə etdiyi üçün daha sürətlidir. Mikroservislər 

arasında yüksək tezlikli məlumat mübadiləsi tələb edən sistemlər üçün gRPC ideal həlldir. Eyni 

zamanda bidirectional streaming dəstəyi və type safety təmin edir. 

2. Asinxron Kommunikasiya (Asynchronous Communication) 

Asinxron kommunikasiyada servis sorğu göndərdikdən sonra cavab gözləmir və öz işini 

davam etdirir. Bu model servislər arasında asılılığı azaldır və sistemin ümumi dayanıqlığını 

artırır. Mesaj əsaslı kommunikasiya vasitəsilə servislər bir-birindən müstəqil şəkildə fəaliyyət 

göstərə bilir. 

Mesaj Növbələri (Message Queues) 

Mesaj növbələri asinxron kommunikasiyanın əsas tərkib hissəsidir. RabbitMQ, Apache 

Kafka, Amazon SQS kimi platformalar servislərin mesajları növbələrə göndərməsinə və digər 

servislər tərəfindən emal edilməsinə imkan verir. Bu yanaşma sistemin yükünü bərabər 

paylamağa, mesajların itməməsinə və servislər arasında boş əlaqəni (loose coupling) təmin 

etməyə kömək edir. Məsələn, bir servis sifariş yaradıb mesajı növbəyə göndərə bilər, ödəniş 

servisi isə müstəqil olaraq həmin mesajı oxuyub emal edə bilər. 

Event-Driven Arxitektura 



PARADIGMA, No.4, 2025 

Azərbaycan Universiteti 

144 

Hadisə əsaslı arxitektura mikroservislər arasında məlumat mübadiləsinin daha mürəkkəb 

formasıdır. Bu modeldə servislər hadisələri (events) publish edir və digər servislər maraq 

göstərdikləri hadisələrə subscribe olurlar. Apache Kafka, AWS EventBridge, Azure Event Grid 

kimi platformalar event streaming və event sourcing üçün istifadə olunur. Hadisə əsaslı 

yanaşma sistemin miqyaslanmasını asanlaşdırır, real vaxt məlumat emalını təmin edir və 

servislər arasında tam müstəqillik yaradır. 

3. API Gateway 

API Gateway mikroservis arxitekturasında mərkəzi giriş nöqtəsi rolunu oynayır. Bütün 

xarici sorğular əvvəlcə API Gateway-ə daxil olur, sonra uyğun servislərə yönləndirilir. Bu həll 

authentication, rate limiting, request routing, load balancing və monitoring kimi funksiyaları 

mərkəzləşdirərək sistemin idarəolunmasını sadələşdirir. Kong, AWS API Gateway, Azure API 

Management kimi platformalar bu məqsədlə istifadə olunur. API Gateway həmçinin müxtəlif 

servislərdən gələn məlumatları birləşdirərək (aggregation) klienta vahid cavab qaytara bilir. 

4. Service Mesh 

Service Mesh mikroservislər arasında şəbəkə səviyyəsində idarəetməni təmin edən 

infrastruktur layıdır. Istio, Linkerd, Consul kimi həllər servislərin bir-biri ilə necə əlaqə 

qurduğunu, trafikin necə yönləndirildiyini, təhlükəsizliyin necə təmin edildiyini idarə edir. 

Service Mesh load balancing, circuit breaking, retry logic, distributed tracing, mTLS (mutual 

TLS) şifrələməsi kimi xüsusiyyətləri avtomatik həyata keçirir. Bu yanaşma development 

komandalarını şəbəkə səviyyəsindəki mürəkkəbliyə qapılmaqdan azad edir və servislər 

arasında etibarlı kommunikasiya təmin edir. 

5. Database Per Service Pattern 

Mikroservis arxitekturasının əsas prinsiplərindən biri hər servisin öz məlumat bazasına 

sahib olmasıdır. Bu yanaşma servislər arasında tam müstəqillik yaradır və hər bir servis öz 

məlumatlarını istədiyi texnologiya ilə saxlaya bilər (polyglot persistence). Lakin bu model 

servislər arasında məlumat ardıcıllığını (data consistency) təmin etmək məsələsini ortaya 

çıxarır. Bu problemin həlli üçün Saga Pattern, Event Sourcing və CQRS (Command Query 

Responsibility Segregation) kimi yanaşmalar tətbiq edilir. 

6. Data Consistency və Distributed Transactions 

Mikroservis mühitində məlumat ardıcıllığını təmin etmək ən mürəkkəb məsələlərdən 

biridir. Monolit sistemlərdə ACID (Atomicity, Consistency, Isolation, Durability) 

tranzaksiyalar asanlıqla idarə olunurdu, lakin paylanmış sistemlərdə bu mümkün deyil. Bunun 

əvəzinə eventual consistency modeli tətbiq edilir. Saga Pattern uzunmüddətli tranzaksiyaları 

kiçik addımlara bölərək hər addımın kompensasiya mexanizmini təmin edir. Two-Phase 



PARADIGMA, No.4, 2025 

Azərbaycan Universiteti 

145 

Commit (2PC) protokolu isə bütün servislərə tranzaksiya əməliyyatını commit etmək və ya 

rollback etmək barədə siqnal göndərir. 

7. Caching Strategiyaları 

Mikroservislər arasında məlumat mübadiləsini optimallaşdırmaq üçün caching 

mexanizmləri mühüm rol oynayır. Redis, Memcached kimi in-memory cache həlləri tez-tez 

istifadə olunan məlumatları yaddaşda saxlayaraq sorğu sürətini əhəmiyyətli dərəcədə artırır. 

Cache-aside, write-through, write-behind kimi strategiyalar məlumatların necə və nə vaxt 

cache-ə yazılacağını müəyyən edir. Distributed caching sistemləri isə birdən çox serverin 

yaddaşını birləşdirərək böyük həcmli məlumatların sürətli şəkildə əldə edilməsini təmin edir. 

8. Circuit Breaker Pattern 

Mikroservis arxitekturasında bir servisin çökməsi digər servislərə zəncir reaksiyası 

yarada bilər. Circuit Breaker pattern bu problemin qarşısını alır. Əgər bir servis müəyyən sayda 

uğursuz sorğudan sonra cavab vermirsə, Circuit Breaker "açılır" və həmin servisə sorğular 

müvəqqəti dayandırılır. Bu zaman fallback mexanizmi işə düşür və ya keşdən məlumat 

qaytarılır. Müəyyən müddətdən sonra Circuit Breaker yenidən cəhd edir və əgər servis bərpa 

olunubsa, normal iş rejiminə qayıdır. Resilience4j, Hystrix kimi kitabxanalar bu pattern-i 

həyata keçirir. 

9. Monitoring və Distributed Tracing 

Mikroservislər arasında məlumat axınını izləmək üçün monitoring və distributed tracing 

alətləri vacibdir. Prometheus, Grafana, ELK Stack (Elasticsearch, Logstash, Kibana) sistemin 

performansını real vaxtda izləməyə imkan verir. Jaeger, Zipkin kimi distributed tracing 

platformaları isə sorğunun bütün servislər arasında keçdiyi yolu vizuallaşdırır və darboğazları 

müəyyənləşdirməyə kömək edir. Bu alətlər latency, error rate, throughput kimi metrikləri qeydə 

alır və sistem administratorlarına operativ qərar vermək imkanı yaradır. 

10. Komandanın hazırlığı və best practices 

Mikroservis arxitekturasında işləyən development komandaları məlumat ötürülməsi 

üsulları, kommunikasiya pattern-ləri və distributed sistemlərin özünəməxsus çətinlikləri ilə 

tanış olmalıdırlar. API versiyalaşdırması, backward compatibility, idempotency, timeout və 

retry strategiyaları kimi mövzularda bilik əldə etməlidirlər. Komanda üzvləri containerization 

(Docker), orchestration (Kubernetes), CI/CD pipeline qurulması və infrastructure as code 

(Terraform, Ansible) kimi texnologiyalara yiyələnməlidirlər. Mütəmadi olaraq kod review, 

architecture review və performans testləri həyata keçirilməlidir. 

Nəticə 



PARADIGMA, No.4, 2025 

Azərbaycan Universiteti 

146 

Mikroservis arxitekturasında məlumatların effektiv ötürülməsi sistemin uğurlu 

fəaliyyətinin əsasını təşkil edir. Sinxron və asinxron kommunikasiya modelləri, mesaj 

növbələri, event-driven arxitektura, API Gateway, Service Mesh kimi yanaşmalar sistemin 

tələblərinə uyğun olaraq seçilməli və tətbiq edilməlidir. Məlumat ardıcıllığı, distributed tracing, 

caching strategiyaları və circuit breaker pattern-i mikroservis mühitinin kompleks məsələlərini 

həll etməyə kömək edir. Düzgün texnologiya seçimi və komandanın bu sahədə bilikli olması 

sistemin performansını, miqyaslanmasını və etibarlılığını artırır. Mikroservis arxitekturasının 

üstünlüklərindən tam istifadə etmək üçün məlumat ötürülməsi strategiyaları diqqətlə 

planlaşdırılmalı və sistemin inkişafı ilə paralel olaraq təkmilləşdirilməlidir. 

 

Ədəbiyyat  

1. Newman S., (2021), Building Microservices: Designing Fine-Grained Systems (2nd 

Edition), O'Reilly Media, p.344. 

2. Richardson C., (2018), Microservices Patterns: With Examples in Java, Manning 

Publications, p.416. 

3. Fowler M., Lewis J., (2014), Microservices: A Definition of This New Architectural Term: 

[Elektron resurs] / – 25 mart, 2014. URL: 

https://martinfowler.com/articles/microservices.html 

4. Indrasiri K., Siriwardena P., (2021), Microservices Communication Patterns. In: 

Microservices for the Enterprise, Apress, Berkeley, CA, p. 245. 

 

EFFECTIVE WAYS OF DATA TRANSFER IN MICROSERVICE 

ENVIRONMENT 

 

T.A. Asadli, A.Kh. Khanmammadov 

 Azerbaijan University, Jeyhun Hajibeyli 71, Baku, Azerbaijan 

 

Abstract: Data transfer in microservice architecture directly impacts system 

performance, reliability, and scalability. Synchronous and asynchronous methods, message 

queues, and API Gateway solutions are implemented to ensure effective communication 

between services. This approach enhances system flexibility and reduces dependencies between 

components. 

Keywords: Microservices, message queues, RESTful API, gRPC, event-driven 

architecture, data consistency. 

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

